<acronym id="uye6a"><small id="uye6a"></small></acronym>
<acronym id="uye6a"></acronym>
<acronym id="uye6a"><center id="uye6a"></center></acronym>
<acronym id="uye6a"></acronym>

Monday, June 25, 2012

With Yammer, Microsoft Begins Its Journey From Collaborative To Social

Confirming what we already knew, today Microsoft announced they are acquiring Yammer for $1.2 billion in cold cash. Here's a blog post by David Sacks, the CEO of Yammer.

Microsoft doesn't report a revenue breakdown for their individual products but SharePoint is believed to be one of the fastest growing products with annual revenue of more than $1 billion. Regardless of how Microsoft markets and positions SharePoint, it has always been collaboration software and not really social software. Microsoft does seem to understand the challenges it faces in moving their portfolio of products to the cloud, including SharePoint. Microsoft also understands value of having end users on their side even though SharePoint is sold as enterprise software. Microsoft's challenges in transitioning to the cloud are similar to the ones faced by other on-premise enterprise software vendors.

But, I really admire Microsoft's commitment by not giving up on any of these things. Skype's acquisition was about reaching those millions of end users and they continue to do that with their acquisition of Yammer. Going from collaborative to social requires being able to play at the grassroots level in an organization as opposed to a top down push and more importantly being able to create and leverage network effects. It's incredibly difficult to lead in with an on-premise solution retrofitted for cloud to create network effects. Native cloud solutions do have this advantage. Yammer will do this really well while helping Microsoft to strengthen SharePoint as a product and maintain its revenue without compromising margins. If Microsoft executes this well, they might unlock a solution for their Innovator's Dilemma.

With Yammer, Microsoft does have an opportunity to fill in the missing half of social enterprise by transforming productivity silos into collaborative content curation. As a social enterprise software enthusiast, I would love to see it happen, sooner rather than later.

At personal level, I am excited to see the push for social in enterprise software and a strong will and desire to cater to the end users and not just the decision makers.  I hope that more entrepreneurs recognize that enterprise software could be social, cool, and lucrative. This also strengthens market position for the vendors such as Box and Asana.

It's impressive what an incumbent can do when they decide to execute on their strategy. Microsoft is fighting multiple battles. They do have the right cards. It's to be seen how they play the game.

Friday, June 15, 2012

Proxies Are As Useful As Real Data

Last year I ran a highly unscientific experiment. I would regularly put a DVD in an open mail bin in my office to mail it back to Netflix, every late Monday afternoon. I would also count the total number of Netflix DVDs put inside that bin by other people. Over a period of time I observed a continuous and consistent decline in the number of DVDs. I compared my results with the numbers released by Netflix. They matched. I'm not surprised. Even though this was an unscientific experiment on a very small sample size with a high degree of variables, it still gave me insights into the overall real data, that I otherwise had no access to.

Proxies are as useful as real data.

When Uber decides to launch a service in a new city or when they are assessing demand in an existing city they use crime data as surrogate to measure neighborhood activity. This measurement is a basic input in calculating the demand. There are many scenarios and applications where access to a real dataset is either prohibitively expensive or impossible. But, a proxy is almost always available and it is good enough in many cases to make certain decisions that eventually can be validated by real data. This approach, even though simple, is ignored by many product managers and designers. Big Data is not necessarily solving the problem of access to a certain data set that you may need, to design your product or make decisions, but it is certainly opening up an opportunity that didn't exist before: ability to analyze proxy data and use algorithms to correlate them with your own domain.

As I have argued before, the data external to an organization is probably far more valuable than the data that they internally have. Until now the organizations barely had capabilities to analyze a subset of their all internal data. They could not even think of doing anything interesting with the external data. This is rapidly going to change as more and more organizations dip their toes in Big Data. Don't discriminate any data sources, internal or external.

Probably the most popular proxy is the per-capita GDP to measure the standard of living. The Hemline Index is yet another example where it is believed that the women's skirts become shorter (higher hemline) during good economic times and longer during not-so-good economic times.

Source: xkcd
Proxy is just a beginning of how you could correlate several data sources. But, be careful. As wise statisticians will tell you, correlation doesn't imply causation. One of my personal favorite example is the correlation between the Yankees winning the worldseries and a democratic president in the oval office. Correlation doesn't guarantee causation, but it gives you insights into where to begin, what question to ask next, and which dataset might hold a key to that answer.This iterative approach wasn't simply feasible before. By the time people got an answer to their first question, it was too late to ask the second question. Ability to go after any dataset anytime you want opens up a lot more opportunities. At the same time when Big Data tools, computing, and access to several external public data sources become a commodity it would come down to human intelligence prioritizing the right questions to ask. As Peter Skomoroch, a principal data scientist at LinkedIn, puts it "'Algorithmic Intuition' is going to be as important a skill as 'Product Sense' in the next decade."
<acronym id="uye6a"><small id="uye6a"></small></acronym>
<acronym id="uye6a"></acronym>
<acronym id="uye6a"><center id="uye6a"></center></acronym>
<acronym id="uye6a"></acronym>